Với các ứng dụng sử dụng SmartPLS - phần mềm chính được sử dụng trong mô hình phương trình kết cấu hình vuông ít nhất một phần (PLS-SEM) - hướng dẫn thực tế này cung cấp hướng dẫn ngắn gọn về cách sử dụng kỹ thuật thống kê tiến hóa này để tiến hành nghiên cứu và thu được các giải pháp. Với các nghiên cứu mới nhất, các ví dụ mới và các cuộc thảo luận mở rộng trong suốt, ấn bản thứ hai được thiết kế để dễ hiểu bởi những người có đào tạo thống kê và toán học hạn chế, những người muốn theo đuổi các cơ hội nghiên cứu theo những cách mới.

 Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition. Thousand Oaks: Sage.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition. Thousand Oaks: Sage.


(Trích Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition. Thousand Oaks: Sage)

Mục lục sách

Chapter 1: An Introduction to Structural Equation Modeling
  • Chapter Preview
  • What Is Structural Equation Modeling?
  • Considerations in Using Structural Equation Modeling
    • Composite Variables
    • Measurement
    • Measurement Scales
    • Coding
    • Data Distributions
  • Structural Equation Modeling With Partial Least Squares Path Modeling
    • Path Models With Latent Variables
    • Measurement Theory
    • Structural Theory
  • PLS-SEM, CB-SEM, and Regressions Based on Sum Scores
    • Data Characteristics
    • Model Characteristics
  • Organization of Remaining Chapters
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 2: Specifying the Path Model and Examining Data
  • Chapter Preview
  • Stage 1: Specifying the Structural Model
    • Mediation
    • Moderation
    • Higher-Order and Hierarchical Component Models
  • Stage 2: Specifying the Measurement Models
    • Reflective and Formative Measurement Models
    • Single-Item Measures and Sum Scores
  • Stage 3: Data Collection and Examination
    • Missing Data
    • Suspicious Response Patterns
    • Outliers
    • Data Distribution
  • Case Study Illustration: Specifying the PLS-SEM Model
    • Application of Stage 1: Structural Model Specification
    • Application of Stage 2: Measurement Model Specification
    • Application of Stage 3: Data Collection and Examination
  • Path Model Creation Using the SmartPLS Software
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 3: Path Model Estimation
  • Chapter Preview
  • Stage 4: Model Estimation and the PLS-SEM Algorithm
    • How the Algorithm Works
    • Statistical Properties
    • Algorithmic Options and Parameter Settings to Run the Algorithm
    • Results
  • Case Study Illustration: PLS Path Model Estimation (Stage 4)
    • Model Estimation
    • Estimation Results
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 4: Assessing PLS-SEM Results Part I: Evaluation of Reflective Measurement Models
  • Chapter Preview
  • Overview of Stage 5: Evaluation of Measurement Models
  • Stage 5a: Assessing Results of Reflective Measurement Models
  • Internal Consistency Reliability
  • Convergent Validity
  • Discriminant Validity
  • Case Study Illustration—Reflective Measurement Models
  • Running the PLS-SEM Algorithm
  • Reflective Measurement Model Evaluation
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 5: Assessing PLS-SEM Results Part II: Evaluation of the Formative Measurement Models
  • Chapter Preview
  • Stage 5b: Assessing Results of Formative Measurement Models
    • Step 1: Assess Convergent Validity
    • Step 2: Assess Formative Measurement Models for Collinearity Issues
    • Step 3: Assess the Significance and Relevance of the Formative Indicators
    • Bootstrapping Procedure
    • Bootstrap Confidence Intervals
  • Case Study Illustration—Evaluation of Formative Measurement Models
    • Extending the Simple Path Model
    • Reflective Measurement Model Evaluation
    • Formative Measurement Model Evaluation
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 6: Assessing PLS-SEM Results Part III: Evaluation of the Structural Model
  • Chapter Preview
  • Stage 6: Assessing PLS-SEM Structural Model Results
    • Step 1: Collinearity Assessment
    • Step 2: Structural Model Path Coefficients
    • Step 3: Coefficient of Determination (R2 Value)
    • Step 4: Effect Size f2
    • Step 5: Blindfolding and Predictive Relevance Q2
    • Step 6: Effect Size q2
  • Case Study Illustration—How Are PLS-SEM Structural Model Results Reported?
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 7: Mediator and Moderator Analysis
  • Chapter Preview
  • Mediation
    • Introduction
    • Types of Mediation Effects
    • Testing Mediating Effects
    • Measurement Model Evaluation in Mediation Analysis
    • Multiple Mediation
    • Case Study Illustration
  • Moderation
    • Introduction
    • Types of Moderator Variables
    • Modeling Moderating Effects
    • Creating the Interaction Term
    • Results Interpretation
    • Moderated Mediation and Mediated Moderation
    • Case Study Illustration
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings

Chapter 8: Outlook on Advanced Methods
  • Chapter Preview
  • Importance-Performance Map Analysis
  • Hierarchical Component Models
  • Confirmatory Tetrad Analysis
  • Dealing With Observed and Unobserved Heterogeneity
    • Multigroup Analysis
    • Uncovering Unobserved Heterogeneity
  • Measurement Model Invariance
  • Consistent Partial Least Squares
  • Summary
  • Review Questions
  • Critical Thinking Questions
  • Key Terms
  • Suggested Readings
Bạn nào quan tâm đến cuốn sách Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition. Thousand Oaks: Sage có thể đăng ký tại đường link sau: Phần mềm SmartPLS

Đăng nhận xét

Blogger

Lưu ý: Chỉ thành viên của blog này mới được đăng nhận xét.